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R. Aldrovandi, J.P. Beltŕan Almeida, J.G. Pereira∗
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Abstract

The infinite cosmological “constant” limit of the de Sitter solutions to Einstein’s equation is studied.
The corresponding spacetime is a singular, four-dimensional cone-space, transitive underproper
conformal transformations, which constitutes a new example of maximally-symmetric spacetime.
Grounded on its geometric and thermodynamic properties, some speculations are made in connection
with the primordial universe.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The de Sitter and anti-de Sitter spacetimes are the only possible uniformlycurved four-
dimensional metric spacetimes[1]. They are maximally-symmetric, in the sense that they
can lodge the maximum number of Killing vectors. These spacetimes are related respectively
to a positive and to a negative cosmological constantΛ, and their groups of motions are
respectively the de Sitter and anti-de Sitter groups. In the limit of a vanishingΛ, both de
Sitter and anti-de Sitter groups are contracted[2] to the Poincaŕe group. Concomitantly,
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both de Sitter and anti-de Sitter spacetimes are reduced to the Minkowski space, aflat
maximally-symmetric spacetime. In the contraction procedure, therefore, the initial and
final states are maximally-symmetric spacetimes.

A less studied contraction is the opposite limit of an infinite cosmological constant[3].
As in the previous case, the degree of symmetry is preserved in this contraction process,
resulting in a new maximally-symmetric spacetime, with a well-defined group of motions. It
is a four-dimensional cone spacetime, here denotedN, singular at the cone vertex. Similarly
to the Poincaŕe group, which is the group of motions of the Minkowski spacetime, the group
ruling the kinematics of the cone spacetimeN is the so calledconformal Poincaŕe group,
the semi-direct product of Lorentz and theproper conformal groups[4]. Despite present-
ing a well-defined algebra, however, the spacetime metric becomes unavoidably singular,
precluding the existence of any notion of space distance and time interval. Nevertheless, a
conformal invariant metric can be defined, which allows the definition ofconformal notions
of space distance and time interval. Except at the singular cone vertex, therefore, this new
maximally-symmetric spacetime can be considered as conformally smooth, and infinite
from the point of view of the conformal notions of space and time translations. Differently
from the Minkowski spacetime, which is transitive under ordinary spacetime translations,
this new maximally-symmetric spacetime is found to be transitive under spacetime proper
conformal transformations.

In this work, we will explore the geometric properties of the singular, conformally infinite,
cone spacetimeN. Relying upon these features, as well as on its thermodynamic properties,
a speculation about possible cosmological applications of these ideas will then be made.
We begin by reviewing, in the next section, the fundamentals of de Sitter spaces and groups.

2. The de Sitter spaces and groups

2.1. Definitions and notations

There are two different de Sitter spacetimes[5], one with negative, and one with positive
scalar curvature. They can be defined as hypersurfaces in the pseudo-Euclidean spaces
E4,1 andE3,2, inclusions whose points in Cartesian coordinates (ξA) = (ξ0, ξ1, ξ2, ξ3, ξ4)
satisfy, respectively:

ηABξAξB ≡ (ξ0)2 − (ξ1)2 − (ξ2)2 − (ξ3)2 − (ξ4)2 = −L2

and

ηABξAξB ≡ (ξ0)2 − (ξ1)2 − (ξ2)2 − (ξ3)2 + (ξ4)2 = L2,

with L the so called de Sitter length parameter. We useηab (a, b = 0, 1, 2, 3) for the Lorentz
metricη = diag(1, −1, −1, −1), and the notations = η44 to put both the above conditions
together as

ηab ξaξb + s(ξ4)2 = sL2. (1)
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For s = −1, we have the de Sitter space dS(4, 1), whose metric is derived from the
pseudo-Euclidean metricηAB = (+1, −1, −1, −1, −1). It has the groupSO(4, 1) as group
of motions. Fors = +1, we have the so called anti-de Sitter space, denoted by dS(3, 2). It
comes fromηAB = (+1, −1, −1, −1, +1), and hasSO(3, 2) as its group of motions. Both
spaces are homogeneous:

dS(4, 1) = SO(4, 1)/SO(3, 1), and dS(3, 2) = SO(3, 2)/SO(3, 1).

In addition, each group manifold is a bundle with the corresponding de Sitter or anti-de
Sitter space as base space, and the Lorentz groupL = SO(3, 1) as fiber[6].

2.2. Stereographic coordinates

The four-dimensional stereographic coordinates are obtained through a stereographic
projection from the de Sitter hypersurfaces into a Minkowski spacetime. It is defined by
[7]:

ξa = ha
µxµ ≡ Ω(x)δa

µxµ = Ω(x)xa (2)

and

ξ4 = −LΩ(x)

(
1 − s

σ2

4L2

)
, (3)

where

Ω(x) = 1

1 + sσ2/4L2 , (4)

with σ2 = ηabx
axb = ηµνx

µxν the Lorentz invariant interval. In these expressions, we have
used the relationsxa = δa

µxµ andηµν = δa
µδb

νηab. Theha
µ introduced in(2), on the other

hand, are components of a nontrivial tetrad field, actually of the one-form basis members:

ha = ha
µ dxµ = Ω(x)δa

µ dxµ = Ω(x) dxa.

In terms of the stereographic coordinates, therefore, the de Sitter metric is:

gµν = ha
µhb

νηab ≡ Ω2(x)ηµν. (5)

The de Sitter spaces are thus conformally flat, with the conformal factor given by:Ω2(x).
Notice that we are carefully using the Latin alphabet for the algebra (nonholonomous) in-
dices, and the Greek alphabet for the (holonomous) homogeneous space fields and cofields.
As usual with changes from flat tangent-space to spacetime, indices of the two kinds are
interchanged with the help of a tetrad field.

The de Sitter metric(5) is a solution of the sourceless Einstein’s equation:

Rµν − 1

2
gµνR − Λgµν = 0, (6)
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where the cosmological termΛ and the length parameterL are related by:

Λ = − 3s
L2 . (7)

The energy density associated with the cosmological term is, therefore:

εΛ = c4Λ

8πG
= −s

3c4

8πGL2 . (8)

The Christoffel connection of the metric(5) is [8]:


λ
µν = [

δλ
µδσ

ν + δλ
νδ

σ
µ − ηµνη

λσ
]

∂σ [ln Ω(x)], (9)

with the Riemann tensor components given by:

Rµ
νρσ = −Λ

3

[
δµ
ρ gνσ − δσgµ

νρ

]
. (10)

The Ricci and the scalar curvature tensors are, consequently,

Rµν = −Λgµν, and R = −4Λ. (11)

Observe that, according to our convention, the de Sitter (anti-de Sitter) space has negative
(positive) scalar curvature. Of course, both of them have negative Gaussian curvature.

2.3. Kinematic groups: transitivity

The kinematic group of any spacetime will always have a subgroup accounting for both
the isotropy of space (rotation group) and the equivalence of inertial frames (boosts). The
remaining transformations, generically calledtranslations, can be either commutative or
not, and are responsible for the homogeneity of space and time. This holds of course for
usual Galilean and other conceivable non-relativistic kinematics[9], but also for special-
relativistic kinematics. The best known relativistic example is the Poincaré groupP, natu-
rally associated with the Minkowski spacetimeM as its group of motions. It contains, in the
form of a semi-direct product, the Lorentz groupL = SO(3, 1) and the translation groupT.
The latter acts transitively onM and its manifold is justM. Indeed, Minkowski spacetime
is a homogeneous space underP, actually the quotientM ≡ T = P/L. The invariance of
M under the transformations ofP reflects its uniformity. The Lorentz subgroup provides an
isotropy around a given point ofM, and translation invariance enforces this isotropy around
any other point. This is the usual meaning of “uniformity", in whichT is responsible for the
equivalence of all points of spacetime.

Let us then analyze the kinematic group of the de Sitter and anti-de Sitter spacetimes. In
the Cartesian coordinatesξA, the generators of the infinitesimal de Sitter transformations
are:

JAB = ηACξC ∂

∂ξB
− ηBCξC ∂

∂ξA
, (12)

which satisfy the commutation relations:

[JAB, JCD] = ηBCJAD + ηADJBC − ηBDJAC − ηACJBD.
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In terms of the stereographic coordinatesxa, these generators are written as

Jab ≡ Lab = ηac xc Pb − ηbc xc Pa (13)

and

J4a = −s
(
LPa + s

4L
Ka

)
, (14)

where

Pa = ∂

∂xa
, and Ka =

(
2ηabx

bxc − σ2δc
a

)
Pc (15)

are, respectively, the generators of translations andproper conformal transformations. For
s = −1, they give rise to the de Sitter groupSO(4, 1). Fors = +1, they give rise to the
anti-de Sitter groupSO(3, 2). The generatorsJab refers to the Lorentz subgroupSO(3, 1),
whereasJa4 define the transitivity on the corresponding homogeneous spaces. SinceL =
[3/(−sΛ)]1/2 (notice that−sΛ > 0 for both de Sitter and anti-de Sitter cases), we see from
Eq.(14)that the de Sitter spacetimes are transitive under a mixture of translations and proper
conformal transformations. The relative importance of each one of these transformations
is determined by the value of the cosmological term. In particular, for a vanishingΛ, both
de Sitter groups are reduced to Poincaré, and both de Sitter spaces become the Minkowski
spacetime, which is transitive under ordinary translations.

2.4. Other coordinate systems

In the so calledglobal coordinates (τ, χ, θ, φ), the de Sitter metric acquires the form:

ds2 = c2 dτ2 − L2 cosh2(L−1cτ)
[
dχ2 + sin2 χ(dθ2 + sin2 θ dφ2)

]
. (16)

In these coordinates, the metric is seen to explicitly depend on the time coordinate.
However, there is a specific coordinate system in which it becomes time independent. This
is the so calledstatic coordinates (t, r, θ, φ), in which the metric has the form:

ds2 =
(

1 − r2

L2

)
c2 dt2 − dr2

(1 − r2/L2)
− r2(dθ2 + sin2 θ dφ2). (17)

In this form, the de Sitter metric reveals another important property of the de Sitter
spacetime, namely, the existence of a horizon atr = L. It also shows thatt is a time-like
coordinate only in the regionr < L. Of course, in the case of a time-depending cosmological
term, the metric components will also acquire a implicit time dependence.

2.5. Thermodynamic properties

There is a remarkable relation between gravitational horizons and thermodynamic prop-
erties. The classic example is that of the Schwarzschild solution:

ds2 =
(

1 − 2GM

c2r

)
c2 dt2 − dr2

(1 − 2GM/c2r)
− r2(dθ2 + sin2 θ dφ2), (18)
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which represents a black hole of massM. In this case, one can associate with the horizon at
r = 2GM/c2 a temperatureTbh and an entropySbh, given respectively by[10]:

Tbh = �
2

8πkBMl2P
and Sbh = kBAh

4l2P
, (19)

wherekB is the Boltzmann constant,lP =
√

G�/c3 is the Planck length andAh is the area
of the horizon. Now, as is well known, the phenomenon of black hole evaporation, which
consists in an energy exchange between the black hole and the external space, is a genuine
thermodynamical process. As a consequence, the above quantities are found to be related
through the thermodynamic identity:

dEbh = Tbh dSbh, (20)

usually called thefirst law of black hole thermodynamics. Since in this process the black
hole massM changes, it can be consistently considered as a variable parameter. In this case,
integrating Eq.(20)with Tbh andSbh given by Eq.(19)yields:

Ebh = Mc2, (21)

which is the total energy inside the Schwarzschild horizon.
Due to the common presence of a horizon, in the same way as in the Schwarzschild

case, it is possible to attribute thermodynamic features also to the de Sitter horizon[11].
This result can be demonstrated mathematically in many different ways, of which the
simplest procedure is based on the relationship between temperature and the Euclidean
extension of spacetime. This can be seen by observing that spacetimes with horizons present
a natural analytic continuation from Minkowskian to Euclidean signature, which is obtained
by makingτ → iτ. If the metric becomes periodic, one can naturally associate a notion of
temperature to such spacetimes. For example, the de Sitter metric(16)can be continued to
imaginary time yielding:

−ds2 = c2 dτ2 + L2 cos2(L−1cτ)
[
dχ2 + sin2 χ(dθ2 + sin2 θ dφ2)

]
, (22)

which is clearly periodic incτ, with period 2πL. It then follows that the temperature:

TdS = �c

2πLkB
(23)

can be associated with the de Sitter spacetime. In a similar fashion, one can also associate
to the de Sitter horizon the entropy

SdS = kBAh

4l2P
≡ πc3kBL2

G�
, (24)

whereAh = 4πL2 is the area of the horizon.
Although, the attribution of temperature and entropy to the de Sitter horizon is quite rea-

sonably understood, the definition of energy is still highly controversial[12]. It is, however,
still possible to make some speculations about this point. First, we note that, for consistency
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reasons, whenever a cosmological term is present, an equation of state of the form:

pdS = −εdS ≡ −EdS

V
(25)

has to be introduced, wherepdSis the pressure,εdSis the energy density, andV is the volume
enclosed by the horizon. Accordingly, the first law of the de Sitter thermodynamics is to be
written as

dEdS = TdSdSdS − pdSdV. (26)

For a constant cosmological term, and rendering as implausible the existence of the notion
of evaporation of the de Sitter universe, the energy, entropy and volume will be constant,
and the above equation will be trivially satisfied. However, for a time varying cosmological
term[13], the de Sitter parameterL will change with time, and so will doEdS, SdS, andV.
Using thatV ∼ L3, which implies:

dV

V
= 3

L
dL,

Equation(26)can be integrated to give:

EdS = −c4 L

2G
. (27)

Before proceeding further, let us examine the reason for the minus sign in the energy. To
begin with, we observe that there is a fundamental difference between the Schwarzschild
and the de Sitter solutions: whereas the former is valid outside, the latter is valid inside
their corresponding horizons. The above energy, therefore, refers necessarily to the internal
side of the de Sitter horizon. Now, if we ascribe a negative energy to the internal side of the
horizon, because the Killing vector∂/∂t, used to define energy, changes direction across
the horizon, we are forced to ascribe a positive energy to the external side of the horizon.1

When we do that, a direct comparison can then be made with the black hole case, whose
solution is valid outside the corresponding horizon. Based on this argument, we can assert
that the correct expression for the energy associated to (the external side of) a de Sitter
horizon is:

EdS = c4 L

2G
. (28)

It is important to remark that only energy changes sign across the horizon. The con-
sistency of this result can be verified by observing that only for a positive energy
the equation of state(25) will give rise to a negative pressure, as required by dark
energy.

Using now the analogy with the black hole case, we might expect that the energy associ-
ated to the external side of the horizon coincides with the energy enclosed by the horizon.

1 A detailed discussion of this point can be found in Ref.[14].
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When there exists a time-like Killing vectorξµ = (1, �0) associated to time the translation
∂/∂t, this energy can be written in the form[15]:

EdS =
∫

r≤L

√
hTµνξ

µnν d3x, (29)

whereh is the determinant of the induced metric on at = constant section of the de Sitter
spacetime,Tµν represents the energy–momentum density of theΛ term, andnµ = ξµ/ξ.
Now, in the static coordinates(17), we have:

ξ ≡ |ξµ| = (gµρξ
µξρ) = (g00)

1/2, and
√

h = (g11)
1/2r2 sinθ.

Making use of the energy–density invariant definition:

εdS = Tµνn
µnν,

it is then easy to verify that, in order to yield the energy(28), we must have:

εdS = 3c4

8πGL2 . (30)

We see from this expression that the energy density associated with the de Sitter horizon
coincides with the (dark) energy density related to apositive cosmological term. Notice
that, whereas the energy grows up linearly with an increasingL, the energy density falls off
with L−2. Finally, it is important to remark that a time-decaying cosmological term implies
necessarily that matter be created inside the horizon[16]. Of course, as the universe expands
and matter is created, spacetime will no longer be apure de Sitter space. However, since
the only effect of the presence of matter is to change the position of the horizon in relation
to a pure de Sitter spacetime, it is still possible to make sense of the above thermodynamic
quantities, even in the presence of matter.

3. The infinite cosmological term spacetime

3.1. Introductory remarks

We consider now the In̈onü-Wigner contraction[2] limit Λ → ∞ (which corresponds
to L → 0) of the de Sitter solutions studied in the previous section. To begin with, let
us remark that, on account of the quotient character of the de Sitter spacetimes, geome-
try and algebra are deeply mixed. Any deformation in the algebras and groups, therefore,
will produce concomitant deformations in the imbedded spacetimes. Since the contraction
of groups and algebras is a mathematically well established procedure, we have conse-
quently a rigorous method of studying limit solutions of Einstein’s equation. As an ex-
ample, and for the sake of completeness, let us consider first the contraction limitΛ → 0
(which corresponds toL → ∞). In this limit, as is well known, the de Sitter and anti-
de Sitter groups are lead to the Poincaré groupP, the semi-direct product of the Lorentz
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L and the translationT groups:P = L	 T. Its generators areLab andPa, which satisfy
the algebra:

[Lab, Lcd ] = ηbcLad + ηadLbc − ηbdLac − ηacLbd,

[Pa, Lcd ] = ηacPd − ηadPc, [Pa, Pc] = 0.

As a result of this group deformation, the de Sitter metric(5) is easily seen to become
the Minkowski metric, and the Riemann, Ricci and scalar curvature tensors are found to
vanish. This means essentially that one obtains the flat Minkowski spaceM = P/L, which
is transitive under ordinary translations.

3.2. Infinite cosmological term limit

In the contraction limitΛ → ∞, the de Sitter groups are lead to the so calledsecond
or conformal Poincaŕe groupQ, the semi-direct product between LorentzL and the proper
conformal groupC, that is,Q = L	 C [4]. Its generators areLab andKa, which satisfy the
same commutation relations of the Poincaré Lie algebra:

[Lab, Lcd ] = ηbcLad + ηadLbc − ηbdLac − ηacLbd,

[Ka, Lcd ] = ηacKd − ηadKc, [Ka, Kc] = 0.

It should be mentioned, however, that the Lie group corresponding to this algebra is
completely different from the ordinary Poincaré groupP.

As already remarked, the above group deformation will produce concomitant changes
in the imbedded spacetimes. In fact, we see from Eq.(1) that in the limit of an infinite
cosmological term (L → 0), the de Sitter and the anti-de Sitter spaces are both led to a
four-dimensional cone-space, which we denote byN. This process is pictorially shown
in Fig. 1, from where we see that, whereas the de Sitter space approaches the cone from
outside, the anti-de Sitter approaches the cone from inside.

Now, it can be seen that, in the limitL → 0, the de Sitter metric becomes singular
everywhere inN:

lim
L→0

gµν = 0, lim
L→0

gµν → ∞. (31)

As a consequence, noordinary invariant interval can be defined onN, which means
that neither the usual notions of space distance and time interval hold. Nevertheless,
the Levi-Civita connection(9) is well defined, and consequently the Riemann curvature
tensor is also well defined. As an explicit computation shows, whereas both the Rie-
mann and the Ricci curvature tensors vanish forL → 0, the scalar curvature becomes
infinity:

lim
L→0

R → ∞. (32)

Vanishing Riemann and Ricci tensors with an infinity scalar curvature is a characteristic
property of a spacetime with an infinite cosmological term[17].



R. Aldrovandi et al. / Journal of Geometry and Physics 56 (2006) 1042–1056 1051

Fig. 1. The figure on the left represents the de Sitter space contraction towards the cone-space. The figure on
the right represents the anti-de Sitter space contraction towards the same cone-space. Notice that the de Sitter
space approaches the cone from outside, whereas the anti-de Sitter approaches the cone from inside (for easy
visualization, two dimensions have been suppressed in these figures).

3.3. Kinematic group: transitivity

Like the Minkowski spacetimeM, the cone-spaceN is a homogeneous space, but under
Q : N = Q/L. The kinematical groupQ, as the Poincaré group, has the Lorentz groupL
as the subgroup accounting for the isotropy ofN. However, the proper conformal transfor-
mations introduce a new kind of homogeneity: instead of the ordinary translations defining
homogeneity on Minkowski spacetime, all points ofN are equivalent through proper confor-
mal transformations. In other words, the cone-spaceN is transitive under proper conformal
transformations. The PoincaréP and the conformal PoincaréQ groups can then be con-
sidered as dual to each other in the sense that they are the isometry groups of spacetimes
characterized respectively by a vanishing and an infinite cosmological term.

A crucial point is to notice that there are two notions of space distance and time interval
involved: the usual one, related to translations and defining the transitivity of Minkowski
spacetime, and the conformal one, related to the transitivity of spacetimes with an infinite
cosmological term. In the intermediate case of a finite cosmological term, the transitivity
of the corresponding de Sitter spacetime is given by a mixture of these two notions, as can
be seen in the de Sitter “translation” generators(14). The relative importance between the
translation and the proper conformal generators is determined by the value of the cosmo-
logical term. ForΛ → 0, the de Sitter spacetime becomes the Minkowski spaceM, which
is transitive under ordinary spacetime translations. ForΛ → ∞, the de Sitter spacetime
becomes the four-dimensional cone-spaceN, which is transitive under proper conformal
transformations. Two generic points onN cannot be taken one into the other by ordinary
translations, but can be related by proper conformal transformations. On account of this
conformal transitivity, the cone-spaceN can be said to beconformally infinite.

Despite presenting all properties of an ordinary spacetime singularity, the vertex is
smoothly connected with all other points of the cone-space through proper conformal trans-
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formations (the conformal infiniteness alluded to above). Although, the ordinary notions of
space distance and time interval fail onN, the corresponding notions of conformal space
and conformal time can be defined[18]. This means essentially that, in addition to the or-
dinary metricgµν (which becomes singular in the contraction limitΛ → ∞), it is possible
to define another metric onN, which will be responsible for the conformal notions of space
distance and time interval.

3.4. Conformal invariant metric

Defining the reciprocal ambient space coordinate2:

χa = ξa

4L2 , (33)

it is easy to see that, in the contraction limitL → 0, the stereographic projection(2)becomes
the spacetime inversion, which in the case of a positive cosmological term (s = −1) is given
by:

χa = − xa

σ2 . (34)

Now, this transformation is well known to relate translations with proper conformal
transformations[19]. In fact, under the spacetime inversion:

xa → x̄a = − xa

σ2 , (35)

the translation generators transform according to:

Pa → P̄a = Ka. (36)

Since the Lorentz generators are invariant:

Lab → L̄ab = Lab, (37)

the inversion transformation is seen to relate actually the Poincaré with the conformal
Poincaŕe groups. Now, under this transformation, the Minkowski spaceM is transformed
into the four-dimensional cone-spaceN, and vice-versa. Notice, for example, that the points
at infinity of M are lead to the vertex of the cone-spaceN, and those on the light-cone ofM
become the infinity ofN. Minkowski and the cone spacetimes can, therefore, be considered
asdual to each other in the sense that their geometries are determined, respectively, by a
vanishing and an infinite cosmological term. Theduality transformation connecting these
two geometries is the spacetime inversion(35).

On account of the above described relation, by applying the duality transformation(35)
to the Minkowski metricηab, it is possible to obtain a conformal invariant metric ¯ηab on the
cone-spaceN, which is found to be:

η̄ab = σ−4 ηab, η̄ab = σ4 ηab. (38)

2 The factor 4 has been introduced to compensate the same factor appearing in the de Sitter generators(14).
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Therefore, if:

ds2 = ηab dxa dxb (39)

is the Minkowski interval, the corresponding cone-space “conformal interval” will be:

ds̄2 = ηab dx̄a dx̄b = η̄ab dxa dxb. (40)

As a simple calculation shows, the metric ¯ηab is in fact invariant under the conformal
Poincaŕe groupQ.

3.5. Thermodynamic properties

Let us now analyze the behavior of the thermodynamic quantities in the limit of an infinite
cosmological term (L → 0). In that limit the temperature, according todefinition (23), be-
comes infinity:TdS → ∞. The entropy, on the other hand, according to the expression(24),
vanishes:SdS = 0. And finally, on account of thedefinition (27), the energy associated with
the de Sitter horizon vanishes identically:EdS = 0. It is important to observe that, although
the energy vanishes, the energy density, according to the expression(30), becomes infinity:
εdS → ∞. The reason for this behavior is that the volume delimited by the horizon vanishes
faster than the energy. We can thus say that the above initial conditions are consistent with
what would be expected for a big-bang universe. It is also important to remark that, as the
Minkowski spacetime is obtained in the limit of a vanishing cosmological term (L → ∞),
we can associate to it a vanishing temperature, an infinite entropy3 and an infinite energy,
with the energy density going to zero. Furthermore, the horizon associated to a Minkowski
spacetime becomes infinite, which is the same as no horizon at all.

4. Final remarks

The spacetime associated with an infinite cosmological term has a quite peculiar ge-
ometry. To understand it, let us consider the Minkowski spacetime. As is well known, it
is transitive under spacetime translations. In the presence of a positive cosmological term,
Minkowski is transformed into a de Sitter spacetime, which is transitive under a mixture of
translation and proper conformal transformations. In a de Sitter spacetime, therefore, there
are two notions of space distance and time interval: the usual one, related to translations,
and the conformal one, related to the proper conformal generators. The relative importance
of these two notions, as can be seen from the de Sitter generators(14), is determined by
the value ofΛ. ForΛ → ∞, the de Sitter spacetime becomes the four-dimensional singu-
lar cone-spaceN, transitive under proper conformal transformations only. Its kinematical
group of motion is thesecond, or conformal Poincaŕe group, the semi-direct product of

3 The concept of entropy is intimately related to the notion of information. In this sense, as no single observer in
de Sitter can access the entire spacetime, she/he has limited information, which appears in the form of a finite value
for the corresponding entropy. This is qualitatively different from Minkowski space, where a time-like observer will
eventually have the entire history of the universe in the past light-cone. This corresponds to an infinite information,
and consequently to an infinite entropy.
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Lorentz and proper conformal groups. In this spacetime, therefore, the usual concepts of
space distance and time interval break down, a property also revealed by the fact that the
usual metric tensor is singular everywhere onN. Another way to see this property is to
observe that the causal domain of any single inertial observer is bounded by its horizon,
whose radius goes to zero for an infinite cosmological constant. In other words, its causal
domain collapses to a point. Notice that, although the collapse is observer-dependent, it is
meaningful since any observer will experience it.

In spite of the lack of the usual notions of space distance and time interval, it is possible
to define a conformal invariant metric on the cone-spaceN, which defines a conformal
interval. This means that any two points will not be connected by the usual concepts of
space and time intervals, but by aconformal notion of space and time intervals. Except
for the singular vertex, therefore, the cone-spaceN can be said to be conformally smooth
and infinite. It is a new example of a maximally-symmetric spacetime, with a well-defined
group of motions—the conformal Poincaré group.

A possible application of these results refers to the cosmology of the early Universe.
According to the standard big-bang model, the universe started from a singular point. As
general relativity breaks down at any singularity, the initial condition of the universe cannot
be characterized as a particular solution of the theory governing the universe dynamics. It
is consequently left to be chosen freely, and often considered to be beyond the scope of the
known physical theories. On the other hand, recent observations[20] indicate the presence
of a nonvanishing cosmological termΛ in our Universe. Furthermore, inflation requires a
very high value forΛ at the early stages of the universe[21]. It is consequently appealing to
assume an infinite primordialΛat some initial cosmological time[3], followed by a decaying
but still large cosmological term, which would drive inflation. This means to assume the
initial condition of the universe as the spacetime defined by the de Sitter solution in the limit
of an infiniteΛ. The initial state of the universe would, in this way, become linked to the limit
of a specific solution of Einstein’s equation, and in consequence consistently established as
part of the theory[22]. Accordingly, all energy of the universe would be initially in the form
of dark energy. It is important to notice that this spacetime presents also thermodynamic
properties that fit quite reasonably with what one would expect for a consistent initial state
for the universe. In fact, it has an infinite temperature, and vanishing entropy and energy.
The energy density, however, is infinite. We can then say that such a singular conformal
spacetime presents the basic properties (thermodynamic and geometric) to be considered
as a consistent initial state for a big-bang universe, in which all energy is dark.

From the above considerations, thebirth of the usual concepts of space and time can be
related with the transition from an infinite to a finite cosmological term. In fact, suppose for
example that quantum fluctuations near the cone-space vertex singularity cause the de Sitter
length-parameterL to assume, instead of zero, the Planck length:L = lP 
 1.6 × 10−33 cm.
When this occurs, the singularity disappears, and the cone-space is transformed into a de
Sitter (anti-de Sitter) spacetime with a very high positive (negative) cosmological term. For
a quantum fluctuation generating a negative cosmological term, the resulting anti-de Sitter
spacetime will be pushed back to the original singular state by the highly attractive force
produced by the negativeΛ. This means that the cone-spaceN might be stable under quantum
fluctuations generating a negativeΛ. However, for a quantum fluctuation generating a
positive cosmological term, the resulting de Sitter spacetime will be unstable due to the
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repulsive force produced byΛ, and can eventually give rise to a rapidly expanding universe.
In that plausible case, the ordinary spacetime translations will immediately show up, together
with proper conformal transformations, in the de Sittertranslation generators(14). At
this moment, our usual notions of space distance and time interval emerge, though the
corresponding conformal notions still remain as the most important part of the de Sitter
translation generators. The universe begins to expand through ordinary space, and ordinary
time begins to flow. Of course, the model presupposes a time-decaying cosmological term,
which in turn implies necessarily that matter be created inside the de Sitter horizon[16].
This means that not only ordinary space and time, but also the whole matter content of the
universe would arise from the primordial infinite cosmological term[23].
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